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1 ABSTRACT

A new class of codes, turbo codes, have been introduced for channel coding in communication

systems by French scientists in 1993. Due to the iterative decoding scheme of these codes, it is

possible to achieve results near to the Shannon limit. Their outstanding performance compared

to other forward error correction schemes attracted the interest of researchers. These codes are

considered for the future telecommunications like Universal Mobile Telecommunications

System (UMTS) and for the next generation wireless LANs. In order to decode these codes,

implementation of a soft input and soft output (SISO) decoder is essential. The realisation of

such type of decoders can be done either by using a maximum a posteriori (MAP) symbol

estimation or by using a soft output Viterbi algorithm (SOVA). The main objective of this

contribution is to present the results of the recent research study of different algorithms and

design of a suitable hardware architecture for the introduced modified turbo block decoder.

2 INTRODUCTION

Turbo codes [1] are very interesting for digital data transmission because they allow an iterative

method of decoding and correction of the channel errors. Each decoder is in a position to work

on the received data along with the soft information provided by the previous iteration and

produces an enhanced decoded output bits along with a soft information, which gives us a

reliable information. Thus, the complete intelligence of the decoding is at the decoder. Since the

function of these codes is equivalent to that of a turbo machine, these codes are named as turbo

codes.

This paper starts with an introduction of turbo codes. In many systems mostly block codes are

preferred to encode, transmit and decode the frames independently from one and other. Due to

the application of the recursive systematic convolutional (RSC) codes the difficulties in

terminating the trellis of the decoders are also pointed out. By using tail bits and the polynomial

division property of RSC, a new approach to terminate both the decoders is presented, Modified

Turbo Block Codes (MTBC). Further, MTBC allows to use variable input block lengths and

provides an extra information with which the decoders are able to enhance its correction

performance by suppressing the flattening. In channel coding, interleavers are mainly used to
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k is the no. of information bits. ni represents the no. of redundancy bits generated by the ith

component code. This equation is valid for R und  R 0ü1 ü2 ≠ . The code rate of the component

codes is given by:
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To increase the overall code rate of the data transmission, some of the redundancy is punctured

out of the code word. Punctured bits simply refer to the bits that are not transmitted at the output

of the encoder. While decoding, these bits are filled either with zero information bits or by

unsure information. The overall code rate of a punctured code is given by

Rp =
+ +

k
k n nρ ρ1 1 2 2

, (3.3)

where ρi  represents the puncturing factor at the end of the ith encoder, i.e. the no. of coded bits

removed from the redundancy generated by the respective coder.

The correction capacity of turbo codes is dependent on different parameters like no. of

iterations, selection of polynomials, selection of interleavers etc.. In general, the convolutional

codes with greater minimum distance ‘dmin’ leads to better correction. Since turbo codes also

belongs to this group, the increase in dmin leads to better correction of errors. One way to

increase it is by selecting an optimum interleaver. For UMTS/International Mobile

Telecommunication-2000 (IMT2000) a multi stage interleaver is selected where the rows and

columns are shuffled like treating them as input of a small block interleaver. The minimum

weight of these codes is achieved with the input block containing two ‘1’, i.e. having a weight

of 2. The following section presents a fastened systematic search of an optimum interleaver with

the input frames of weight 2 and also discusses the achieved simulation results. The section

following to it deals with a method of using all possible inputs of a given frame length for an

interleaver search.

3.1 Selection of interleavers using input frames of weight 2

In [3] an algorithm is shown to select an optimum interleaver where the input frame weight ‘din ’

is restricted to 2. If this method is applied to find an interleaver for an extended ATM of size

N=448, with N as frame length, then total no. of inputs is equal to 100128. On the other hand, it
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has to find an optimum from 448! possible interleavers. Here we describe an efficient method of

search. For convenience, we represent ‘di’ as the weight of the redundancy part at the output of

the ith encoder after puncturing. A desired final weight ‘ ′dmin’ at the output of the turbo coder is

given as a start parameter. At first, a weight table for all input frames is generated, where the

first and second bit positions represent the y- and x-axis of the table respectively. The weights

‘d1’ of the output blocks after coding once and puncturing are enlisted in their respective

positions. The starting state of the coder is set to a known state, e.g. ‘0’ state as shown in [4]. An

example for N=5 follows:

0 0 1 0 0 1
5 0

Input frame

Index of Bitposition in Input frame

1 1 1 0 0 0

5 0

Output frame
RSC-Encoder

0

5
0 5

- 2 2 3 3 2

2 - 0 1 1 2

2 0 - 1 1 2

3 1 1 - 0 1

3 1 1 0 - 1

2 2 2 1 1 -

Weight of Output frame

y

x

Figure 3.2: Example for weight table preparation with frame length N=5.

Before tests are conducted to select an optimum random interleaver, all input frames of weight 2

which leads to ( ) mind d din1 + > ′  are discarded, as the interleaver is not having any influence on d1

and they however give rise to outputs with greater weights, i.e. d d d din1 2+ + > ′min . This

discarding leads to enormous time saving factor. It made easy to test 6049 inputs of frame

length 448 instead of 100128 for a given polynomial. As the positions of the two bits of the

frames are of interest, they are grouped together as one tuple. Now those tuples are put together

to form a tuple table whose first bit position is same.

bit1 bit2

2
1 3

4

0
1
1

1d next

next

Tuple Table

Tuple

Figure 3.3: Example of Tuple Table without the weight of the Input frame for d'min=1.

To start the search, either an arbitrary random interleaver or a given interleaver is considered,

which is to be improved with respect to the final output weight d d d dinmin ( )= + +1 2 . Taking first

tuple table, an exchange partner for the first bit position is chosen. Here one has to take into

account whether this exchange has already been tested or it is allowed. With the help of the
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weight and tuple tables, the resulted distance of the so formed interleaver pattern is computed.

Only those parts of the tuple table are effected whose bit position is grouped in the table and the

rest are unchanged. If the result d dmin min> ′ , the new change in the interleaver is made, otherwise

this exchange position is discarded. This process is done until all tuple tables are checked with

the slowly modified interleaver. Finally, the resulted interleaver is saved as a new random

interleaver, if its total weight is greater than ′dmin. The given minimum weight is then changed to

the newly computed weight, i.e. ′ =d dmin min . To exit the interleaver search one can either use

time or maximum dmin.

To test this new algorithm, simulations were carried out with turbo block codes using 2

iterations at SNR=3.75dB. The block length was fixed to 448, code rate to ½ and the memory of

the RSC encoder to 3. A randomly selected interleaver was given as a starting parameter. With

this systematic search for the interleavers, we were able to find 18 good random interleavers out

of 10 million patterns which resulted in dmin = 23. It was seen that the newly found best

optimum random interleaver resulted in BER of 4.37e-6 where as the given interleaver pattern

only 1.26e-5. We observed a coding gain of 0.25dB at SNR=3.75dB. It is further notified that

not all interleavers which resulted in a greater dmin have good correction capacity. We suspect

that not only the consideration of all input frames of size N but also the distribution of the

redundancy is important factors in design of interleavers [5]. Thus, the selection of interleavers

using input frames of weight 2 not only leads to good but also to a bad one with respect to the

BER.

3.2 Use of all possible input frames

Actually, minimum distance for block-codes is calculated using all possible input frames. For

small N one can generate all possible inputs, e.g. if N=21 then there are (2 121 − ), i.e. 2097151

possible inputs excluding the all zero. For N=448 it is difficult to use all the frames.

2  ,1 1

0 1

0

0
0

101

1

1

0

00 1
2  ,2
2  ,3
2  ,4

2
3
4

Node,
2  ,448 448

N

resulted in d  +  d        <  d'in min1

Figure 3.4: Binary tree structure of search for input frames which leads to d d din1 + < ′min.
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To solve this problem we made use of binary tree structure of the input frames as illustrated in

above figure. This selection algorithm of input frames depends only on the first time encoding

and puncturing, i.e. d1, where the interleaver doesn’t have any influence. If and only if the

resulted weight is smaller than the desired weight (d d din1 + < ′min), the path of the input frame is

followed. The search of the input frames starts with N=1, i.e. with 2 possibilities ‘0’ & ‘1’. After

that it goes to the next node where there are 4 possible blocks ‘00’, ‘01’, ‘10’ and ‘11’. As soon

as the weight at a given node is greater than the desired weight it is discarded. In this way all the

input frames which leads to an output weight less than the desired quality are taken into

consideration to design an optimum interleaver.

Result, the first method is restricted only to the inputs of weight 2. Making use of pre computed

weight tables and tuple tables one can fasten this search. The simulation results show that this

method doesn’t lead always to optimum interleavers because all the possible input blocks are

not considered. The second method deals with the search of all possible input frames which can

be used to design an optimum interleaver. The ‘optimum’ interleaver found through this

systematic search has been considered for the implementation.

3.3 Polynomial Division Property

Here, the coding is achieved with a ‘convolution’ of input data sequel with generator

polynomials. With an increase in the memory depth the no. of polynomial combinations also

increase. The selection of an optimum polynomial naturally leads to best correction performance

of turbo codes. Due to the application of the ‘Recursive Systematic Codes (RSC)’ the

difficulties in terminating the trellis of the decoders were also pointed out in [6]. With the

presentation of the Turbo-Block-Codes in [7] a hurdle of terminating one trellis is overcome. By

using tail bits and the polynomial division property of RSC codes, we present a way to terminate

both the decoders, which are used in an iteration of a turbo decoder separated by an interleaver.

We also enlighten the flexibility of the cell size by a fixed code polynomial. Here we give a

concise explanation of this property. All the considered polynomials G(D) for the recursion of

the encoder have a particular polynomial P(D) which satisfy the equation

P D f D G D Dl( ) ( ) * ( )= = +1 . (3.4)

We define P(D) as the reset polynomial and l as the length of it. The division of P(D) by G(D) is

aliquot. If the coderate of the encoder is restricted to ½, the selection of good polynomial

combinations can be done with the equation
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G D G D D H D1 2( ) ( ) * ( )+ = , (3.5)

where the grades of G1(D) and G2(D) are equal to the memory of the encoder ‘m’ and that of

H(D) is ‘m-2’. G1(D) and G2(D) differ in the coefficients D and Dm−1. All the considered

polynomials include the term 1. This class of codes possess a large free distance and does not

lead to catastrophic codes [8]. These codes also include some of the well know primitive

polynomials. For a primitive polynomial there exists a P(D) with l m= −2 1.

If G(D) divides 1+ lD  without any remainder, then it also divides 1+ lnD *  where ‘n’ is a natural

number greater than 0. By encoding a sequence related to 1+ lnD *  through a RSC encoder

starting at the zero state, the encoder will be driven back to the zero state after the end of the

sequence. This property along with the linearity feature is used to terminate the trellis of the

second decoder of an iteration while decoding.

3.4 Modified Turbo-Block-Encoder

In order to make use of the above mentioned property and the tail bits, the encoder is modified

as shown in Figure 3.5.

S1 S2 S3 S3

RSC

LOGIC

d
dt dt0

X

Y

Figure 3.5: Modified turbo block encoder (MTBC).

The information data ‘d ’ of N-bits, where N represents the size of a block, is first passed

through the RSC encoder and at the same time fed into an interleaver of size equal to ( )N Nt+

with ‘Nt’ denoting the number of tail bits, i.e. size of ‘t ’. The interleaver should assure that

each bit d(t) at its input should be equal to the output bit d(t+x), with x N N n lt= + +( * ) . A

logic circuit inspects the present state of the RSC encoder and generates the respective bit, with

which the encoder is driven to the zero state in short time. Note the logic can be replaced with a

modulo addition at the input of the RSC coder. After the last information bit has been passed

through the coder, the ‘S1’ switch selects Nt tail bits which depends on the memory of the

encoder. If the sum of the data bits and the tail bits is not a multiple of the grade of reset

polynomial, then ‘N0’ number of zero bits ‘0 ’ are introduced into the data input of the RSC

encoder by switching ‘S3’.

N i l N Nt0

0
= − +
≥

* ( ) .
(3.6)
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‘i’ is the smallest integer which satisfies the required condition. During the insertion of zero bits

the clocking of the interleaver is stopped. At the same time the output of the encoder is ignored,

as these bits are simply used to satisfy the polynomial division property. Once the last zero bit

has been passed through the encoder the reading of the interleaver data is done by selecting the

‘S2’ switch. Through this modified method the number N is not fixed to a value which is a

multiple of the length of the reset polynomial. Since the blocks are to be independent of each

other, a continuous encoding is not possible.

For instance, a RSC encoder with the octal representation of the polynomials {13,15} is

considered. The recursion polynomial is 13. The grade l of the reset polynomial is 7 and

requires Nt=3 tail bits. If N is 440, then the total size of the interleaver would be 443 with 22

rows and 21 columns where the last row consists of only three elements. The interleaver is filled

with the data in rows and the reading is done column by column. This makes sure that each

input bit of the interleaver is written out after (443+7*n). If a search for an optimal interleaver is

performed, then the shuffling of the order of reading is allowed only within a column. In the

considered example there is a need of 5 zero bits so that the size of input frames of the encoder

is a multiple of its reset polynomial grade 7. Now the systematic part ‘X’ consists of the data bits

and the tail bits. The redundancy part ‘Y’ is punctured to obtain the required code rate.

4 TURBO DECODER

As already mentioned, two candidates are known to implement a SISO decoder, MAP and

SOVA. Since SOVA algorithm is considered for implementation, here we give a synopsis of it.

For thorough description of this algorithm please refer to [9]. In its basic form, the Viterbi

algorithm accepts either hard or soft values of the received signals to compute the branch

metrics for every state, which are added recursively to the old path metric values giving rise to

new path metrics. These operations are done for every state and the path with largest metric

value is selected as the survivor among the other paths merging in that state. This is done in the

Add-Compare-Select (ACS) unit of a Viterbi decoder. The outputs of the ACS unit are then

managed in the survivor memory unit. Finally, the state with the largest accumulated metric is

selected as the survivor at the given time point, and the output of the decoder is taken from the

survivor memory of that particular state. Better results can be achieved if the survivor memory

unit is very large. But for practical realisation it is limited. This is also called truncation path

length and depends on the memory which is used by the convolutional encoder. Acceptable

value is five times the memory length [10]. For the soft output algorithm, not only the hard
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values but also the metric difference (‘∆’) between the survivor and concurrent paths are

delivered by the ACS unit. Along with the hard values, these values are also stored in the soft

value memory unit. For a time point ‘t’ all the metric differences, which have been calculated

till time ‘t-1’ are updated by comparing the survivor and concurrent paths of each state in case if

the hard output values are different. This update is done by selecting the minimum among the

old value and the newly computed ∆. In order to keep the complexity of the computations and

comparisons of ∆ values acceptable, only codes with code rate = 1/x are considered for the

practical realisation, where ‘x’ represents the number of encoder outputs.

5 STEPS TO IMPLEMENT A SOVA DECODER

In order to find out the input, output and internal results word length without any great loss on

the performance, the algorithm was implemented as a bittrue model for a simulation tool.

Figure 5.1 shows the results of the simulations, where the algorithm has been tested for a

convolutional encoder and using the soft input decoder. With the help of those simulations, the

word lengths for the signal processing have been chosen.
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Figure 5.1: Effect of (a) input and (b) internal results word length on the performance at SNR = 2.5 dB.

By a fixed internal word length, though the input word length is increased there is degradation

in the performance of the algorithm. This is because, by large input word lengths, the internal

results reach the maximum limit very quickly and many of the accumulated values are

manipulated, for example by clipping. The algorithm, which is used here, selects a path as the

survivor, if its accumulated value is greater than that of the other path values. In case of clipping

the results, many of the paths have the same maximum value. This increases the possibility for

the selection of a wrong path as the survivor. Figure 5.2 shows the histograms of the soft

values, also called extrinsic informations, which are generated and quantised (4- and 5- bit
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quantisation) by SOVA decoder, when only 1's are taken as input of the encoder. Due to less

number of signal levels at 4-bit quantisation compared to 5-bit, there are many ‘sure’ events.

This may degrade the performance of the next decoding stage, as all the events are not sure

events at low SNR values.

0

200

400

600

800

1000

-0.5 0 0.5 1 1.5

no. of events

normalized extrinsic information of SOVA

Coder input is  '1'

Truncation path length 50

4-Bit input & 7-Bit internal results word length

4-Bit output word length
5-Bit output word length

Figure 5.2: Histogram of extrinsic information for given output word length at SNR = 2.5 dB.

These simulations help the designer to choose the word lengths for the practical realisation.

Through the achieved results we selected 4-bit word length for input and output ports and 7-bit

word length for internal results.

6 TESTSYSTEM

Simulation tool aided algorithm test was the first step taken to implement the above described

turbo decoder. C program realising a SOVA was written for the simulation tools. After

successful implementation and testing of the floating point and bittrue software, word lengths

are selected and a VHDL code has been prepared to realise the SOVA-Decoder. In a parallel

approach the code was fed into ASIC design software tools. Concentrating on the flexibility of

the codec for further tests, e.g. use of different random interleavers, influence of the word

lengths in real systems etc., it was finally decided to test the decoder using field programmable

gate arrays (FPGA).

Figure 6.1a shows the difference between floating point simulation and hardware

measurements. The considered algorithm achieves a SNR loss of ca. 0.5 dB for the same coding

conditions due to the quantisation. Figure 6.1b depicts the hardware circuit which realises the

flexible turbo block decoder. The control of the hardware circuit is taken up by a personal

computer. The communication between the PC and the circuit is achieved via parallel port.

Since the circuit performs only decoding, the PC also performs rest of the functions like data

generation, encoding, puncturing, distortion and quantisation. The circuit supports two modes.
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a b
Figure 6.1:a) Implementation loss b) Hardware circuit of Turbo-Block-Decoder.

In first and simple mode the circuit takes up the received and extrinsic information and performs

one complete iteration and gives back the new extrinsic information. This allows to observe the

development of the results after every iteration. As the communication via parallel port is

considered to be one of the bottleneck, this mode is very slow compared to the second and fast

mode. In the second mode the iteration number ‘I’ is set as a parameter. After the reception of

the information block along with the redundancy information, the desired number of iterations

are performed by the hardware circuit and final results are given back to PC. The functional

diagram is shown in the following figure:

TD-
Module

TD-
Module

TD-
Module

Iteration 1 Iteration 2 Iteration N

PC Turbo-Decoder-
CardI

Input

Output

Output

Input

Iterations (Mode1)

Iterations (Mode2)
I

Figure 6.2: Mutual communication between hardware and software.

Using the slowest speed grade of the FPGA, a maximum throughput of 14 MBit/s channel data

was measured for Mode 1. Communication between PC and hardware is also considered as a

bottleneck for fast tests. The system design was further developed to increase the throughput up

to 30 MBit/s with extending hardware resources. It is possible to achieve a throughput which is

about twice the present rate by using faster speed grades of FPGAs.
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7 SIMULATION AND MEASUREMENT RESULTS

To test efficiency of the new modified block decoding of turbo codes, at first simulations were

carried out using a software tool under different communication environments. Here we explain

one of them where the block length N was 440 bits which is equal to an extended ATM cell in

MEDIAN. In order to be independent of carrier phase estimation differential QPSK modulation

scheme was selected. Figure 7.1a and b depicts the comparison between turbo block codes with

two decoding iterations with SOVA truncation path length 56 and Reed-Solomon Coding

schemes. The code rates are close to ‘5/7’. TC1[619;440] and TC2[616;440] represent the

AWGN channel with termination of all decoders (new method) and termination of only the

second decoder (old method) respectively. In the same way TC3[619;440] and TC4[616;440]

represent the multipath channel with Line-of-Sight (LOS) environment [11]. Since the new

scheme requires more sub-carriers, the number of used sub-carriers by the OFDM was increased

from 310 to 312. Synchronisation of the receiver was done on a reference symbol inserted into

each TDD frame.

The new kind of block decoding leads to a gain of 0.2dB SNR for AWGN channel and 1.5dB

SNR for LOS-MEDIAN modelled channel at a BER of 2e-5.
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b
Figure 7.1: Comparison of Turbo Codes (new and old termination scheme) with Reed-Solomon codes for 310/312

used sub-carrier DQPSK-OFDM system in (a) AWGN and (b) LOS environment.

Thus, for multipath channel there is an appreciable increase in coding gain especially for small

BER (TC3 compared to TC4). Another effect of turbo block decoder, which arises by breaking

the decoding scheme at the end of a block without terminating perfectly, is the flattening of the

achievable bit error rate even by increasing iteration numbers. Influence of this inconvenience is

also decreased using this method of termination. The RS1[616;440] shows the BER for AWGN

channel whereas RS2[616;440] denotes for LOS channel model, both are outperformed by the
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turbo coding scheme (new and old). At BER of 2e-5, the new turbo block code shows a gain of

2.8dB on SNR for AWGN channel compared with Reed-Solomon codes and 2.5 dB for LOS

channel model. The improved coding gain and the substantial decreasing of the flattening level

resulting from the new reset method is representative for all code polynomials. Since this

algorithm brings a small change in the encoder structure, it can be applied for all types of soft-

input-soft-output turbo decoding processors (MAP / SOVA). An other main advantage of this

new coding scheme is its inherent possibility to process variable input block lengths for the

same coding polynomial. This property can be utilised for systems where the block lengths vary

for different applications.

In Figure 7.2 the measurement curves using the hardware circuit are shown. Coherent BPSK

modulation scheme was applied and the truncation path length was set to 28. Selection of the

random interleaver was done by a systematic search depending on the weight distribution table

of the code words at the output of the encoder after puncturing as mentioned in 3.1.
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b
Figure 7.2: (a) Development of results after 3 iterations (b) Iteration effect.

Figure 7.2a presents the development of the results. RES1 stands for the decoding type where

the starting state of the first decoder and the end state of the second decoder of an iteration are

know. RES2 show the new turbo block decoding scheme. RES3 is same as RES2 but resulted

soft values are kept in certain bounds (weighting the soft values). Thus, if RES1 is compared

with RES3 a gain of 1dB SNR is noticed at BER of 7e-6. Figure 7.2b shows the development of

the results after every iteration. Further, the performance is compared with the commercial chip

STEL2060 whose constraint length is 7. After three iterations, turbo block decoder is able to

achieve a gain of 0.5 dB SNR compared with the commercial chip.
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Figure 7.3a and b represent results using the hardware in MEDIAN environment. Modulation of

sub-carriers was set to DQPSK, differential to adjacent sub-carriers, and code rate to ½. The

MEDIAN system synchronisation and phase noise were set to ideal. In contrast to the above

mentioned software simulation results the truncation path length was 28. At BER of  1e-6,

which is interesting for ATM transmission, a total coding gain of 4.5dB has been measured in

AWGN channel whereas 11dB coding gain has been achieved in LOS channel. In all the cases it

has been observed that gain on SNR between iterations 1 and 2 is greater than that between

iteration 2 and 3. This natural behaviour is additionally forced due to absence of the optimal

weighting of the extrinsic values between decoding iterations and limiting the internal word

lengths in order to consume less hardware.
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Figure 7.3: Measured results (a) AWGN and (b) LOS.

8 COMPARISON OF DIFFERENT SISO DECODERS

In modern communications, the trend is to miniaturise the systems for less power consumption and

less weight. Thus, there is a necessity to develop algorithms which are not only optimal in their

function but also occupies less hardware and consume less power. This section deals with power

consumption and delay factor of the SISO decoders. In [3] it has been shown that the selection of a

RSC coder with 8 states gives a good price performance ratio. Therefore, this coder is taken as an

example to describe the calculations. It can be extended to other codes. For convenience, following

abbreviations are used:

•  SOVA: two step soft output Viterbi algorithm, the soft updates are done according to [9] only

for the fist half of truncation path. The remaining half is simple update.

•  B-SOVA: also a two step SOVA, but the updates are done according to [12]

•  S-SML-MAP: slow sliding max-log MAP, where only one add-compare-select (ACS) unit is

used to calculate all the forward and backward recursions [13]
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•  F-SML-MAP: fast SML-MAP, each forward and backward recursion has its own ACS unit

Power Dissipation: The average power dissipation in traditional CMOS circuits can be represented

as three components [14, 15].

1) Switching Power Dissipation: This component, also know as dynamic dissipation, is

independent of the logical function but results due to the charge of the capacitors at the input and

output ports of the gates and wiring of gates (Cload~0.05pF). The average power consumption of

the nodes can be calculated with the amount of energy (Eload) required to charge the nodes to

operating voltage (VDD).

P d
T

E f C Vavg
t

sys
load t clk load DD( ) = =α α 2 .

(8.1)

The factor αt conveys the number of effective node transitions within a clock cycle (fclk) in a chip.

It is taken as 0.2 times the gate count.

2) Short Circuit Power Dissipation: Due to the presence of small capacitors at the outputs of the

gates, the fast change of the signals, until they reach a stable stage, lead to form a direct current

path between the power supply and the ground. This current component during switching doesn't

contribute to the charging of the capacitance of the ports to desired voltage level and therefore

leads to short-circuit power.

P s b f V Vavg t clk DD T( ) ( )= −1
12

2 3α τ .
(8.2)

For a simple analysis it is considered that τ=τrise=τfall=2ns, b=bn=bp transistor gain factor

~50µA/V2, VDD = 5V and VT = VTn = |VTp| threshold voltage= 0.7 V

3) Leakage Power Dissipation: The considered transistors have very small leakage current

(Ireverse). But when the gate count is large, this current is perceptible. It is given by

P l V Iavg DD reverse( ) =  and also occurs in the stand-by mode. A typical value for the reverse leakage

current at room temperature is 2.5 pA/mm2. Now the complete average power dissipation can be

calculated:

P f C V V I AV pA
mmavg t clk load DD t DD short DD= + +α α2

2

2 5. (8.3)

With this equation it is possible to estimate the average power consumption of the decoders. For

SML-MAP decoders some delay elements and the control logic are not considered. The SOVA

decoders need no RAM at the input and output of the unit, which is essential for SML-MAP

decoders. Since most of the modern communication systems have an internal RAM which can also
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be used by the decoders, this aspect is also not taken into calculation. For all decoders the

observation length (window length) is fixed to 28.

SOVA B-SOVA S-SML-MAP F-SML-MAP
BMC 811 2433
ACS 15688 47064
Pathmanagement 64620 108860 19375 42975
Softvalue Computation 620
Total Trans. 81739 125979 36494 93092
Total Gates = (Trans/4) 20435 31495 9123 23273
Core Area [mm²] 12.16 18.74 5.43 13.85
α = 0.2*gates 4087 6299 1824.6 4654.6
P(d) = α*C*V^2*f [w] 0.1532625 0.2362125 0.13029375 0.1745475
P(l) = V*I(rev)*Area [w] 1.52E-10 2.3425E-10 6.7875E-11 1.7313E-10
P(s) [w] 0.04767077 0.07347154 0.02128213 0.05429125
Power Consumption [w] 0.20093327 0.30968404 0.15157588 0.22883875

Table 1: Estimation of hardware resources and power consumption.

Table 1 shows the hardware complexity and the power dissipation of the four considered SISO

decoders at a system clock of 30 MHz. For the calculations only the power is taken, which is need

to decode one complete input block. Thus, Pavg(d) of S-SML-MAP decoder has an extra factor, as

the ACS units are used thrice for one sub-block. For the area calculation 0.75 µm technology is

used. With new technologies the area will change, but the gate count will be the same. Further, it

should be noted that due to change in the parameters only the absolute values are altered, but the

difference is unchanged. Therefore, this calculation can be used as an approximation to compare

the decoders. As it is depicted in Figure 8.1a, power dissipation is directly proportional to the

system clock speed. If an input block with 3 sub-blocks is considered, Figure 8.1b shows the delay

introduced by the decoders between the input and output. Decoder latency depends on the

observation length.
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Figure 8.1: a)Power consumption and b) delay comparison of different SISO implementation algorithms.
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SOVA decoder with register exchange path management, which needs around 0.5dB more SNR for

same BER, is a ‘straight forward’ solution. Its total latency is equal to the observation length and a

small delay δs, which depends on the pipe lining architecture and is usually equal to 5 clock cycles.

Though the realisation of B-SOVA is same as SOVA, due to the extra update option it requires

much hardware resources. The decoder latency of SML-MAP is greater. It can start its calculations

only if at least two sub-blocks are stored in memory. Further, the outputs are in reverse order which

requires RAM to output decoded data in correct order. Anyhow, the presence of interleavers for

turbo codes solves this problem. From the above deliberation it can be concluded that for a high

speed or for a continuous SISO decoding SOVA is a well suitable. If the delay is not the

bottleneck, then S-SML-MAP is a good choice.

9 CONCLUSIONS

In this paper we have shown two new methods to select the input frames for design of an

"optimum" interleaver for turbo block codes. The first method is restricted only to the inputs of

weight 2. Making use of pre computed weight tables and tuple tables one can fasten this search.

The simulation results show that this method doesn’t lead always to optimum interleavers because

all the possible input blocks are not considered. The second method deals with the search of all

possible input frames with a help of a binary tree which can be used to design an optimum

interleaver. In the introduced modified turbo block codes, the termination of the decoders results in

an improvement of the correction capacity of the decoder at high SNR values by suppressing the

early flattening effect. This type of decoding allows to keep the block length variable for a given

code polynomial. We have also presented the selection of generator polynomials for the coding

scheme.

The first design of 30 MBit/s flexible hardware realisation of this turbo decoder for block oriented

transmission using FPGA is presented. Theoretical simulation results are verified developing this

hardware turbo decoder. In addition, the possibility to investigate bit error rates less than 1e-7 is

created. Achieved simulation and measured results using AWGN and time invariant modelled

60GHz indoor wireless LAN channel are presented. An appreciable coding gain is achieved in both

cases using the introduced modified turbo encoder for block transmission.

A procedure to compute power consumption is described and the different SISO algorithms are

compared. The implementation of SOVA decoder with register exchange path management, which

needs around 0.5dB more SNR for same BER, is a fastest and straight forward solution. If the

delay is not the drawback, then slow sliding max-log MAP is a good choice.
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